



## **GCSE MARKING SCHEME**

**AUTUMN 2023** 

GCSE MATHEMATICS – COMPONENT 2 (HIGHER TIER) C300UB0-1

© WJEC CBAC Ltd.

## INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## EDUQAS GCSE MATHEMATICS

## AUTUMN 2023 MARK SCHEME

| Component 2: Higher Tier                                                                                                                                   | Mark | Comment                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.*(a)                                                                                                                                                     |      |                                                                                                                                                                        |
| $\frac{2}{9}$ ISW                                                                                                                                          | B1   |                                                                                                                                                                        |
| 1.*(b)                                                                                                                                                     |      |                                                                                                                                                                        |
| $1400 \div 4 \times 3$                                                                                                                                     | M1   | May be seen in stages.                                                                                                                                                 |
| = 1050                                                                                                                                                     | A1   |                                                                                                                                                                        |
|                                                                                                                                                            | (2)  |                                                                                                                                                                        |
| 2.*                                                                                                                                                        | (3)  |                                                                                                                                                                        |
| 12 250 × (1 – 0.18) × (1 – 0.15) <sup>8</sup>                                                                                                              | M2   | M1 for 12 250 × $(1 - 0.18)$ (= 10 045)<br>OR 12 250 × $(1 - 0.15)^8$ (= 3338.0)<br>OR× $(1 - 0.18)$ × $(1 - 0.15)^8$                                                  |
| An answer in the range                                                                                                                                     |      |                                                                                                                                                                        |
| (£)2737.15 to (£)2737.20                                                                                                                                   | A1   | Allow an answer of (£)2737 from correct working<br>(Year 8 value 3220.18 to 3220.20)                                                                                   |
| (£)9512.80 to (£)9512.85 or (£)9513                                                                                                                        | B1   | FT 'their car value' provided M2 awarded.                                                                                                                              |
| Allow answers not rounded or truncated                                                                                                                     |      | Award M1 SC2 for an answer of (£)9923 or<br>(£)9923.40 or (£)9923.41 OR<br>M1 SC1 for an answer of (£)2326.59<br>from use of 12 250 × $(1 - 0.18) \times (1 - 0.15)^9$ |
|                                                                                                                                                            | (4)  |                                                                                                                                                                        |
| 3.*(a)<br>Mid-points 62.5 67.5 72.5 77.5 82.5                                                                                                              | B1   | May be implied from correct totals, see below                                                                                                                          |
|                                                                                                                                                            |      |                                                                                                                                                                        |
| 62.5 × 19 + 67.5 × 17 + 72.5 × 23 +<br>77.5 × 10 + 82.5 × 1                                                                                                | M1   | FT 'their mid-points' provided at least 4 of these<br>are at the bounds or within the groups<br>1187.5 + 1147.5 + 1667.5 + 775 + 82.5<br>( = 4860)                     |
|                                                                                                                                                            |      | If mid-points are <b>not</b> given, then no marks except for the following cases:                                                                                      |
|                                                                                                                                                            |      | B1 M0 for five correct products not added                                                                                                                              |
|                                                                                                                                                            |      | • B1 M1 for five correct products in an addition                                                                                                                       |
|                                                                                                                                                            |      | B0 M1 for four correct products in an addition                                                                                                                         |
| ÷ 70                                                                                                                                                       | m1   |                                                                                                                                                                        |
| = 69.4(2…) (cm)                                                                                                                                            | A1   | FT<br>Accept 69 (cm) from correct working.                                                                                                                             |
| 3.*(b)                                                                                                                                                     |      |                                                                                                                                                                        |
| No indicated or clearly implied and a suitable explanation e.g.                                                                                            | B1   | Allow 'No' with an explanation e.g.<br>'(In group) 65 – 70'                                                                                                            |
| 'The median is in the group $65 \le l < 70$ .'<br>'The median is the $35^{\text{th}}$ (or $35.5^{\text{th}}$ ) term and<br>in the group $65 \le l < 70$ .' |      | Do not allow 'No' and explanation based on<br>69(.42) or 'their 69(.42)'<br>e.g. 69 is not between 70 and 75 (use of mean)<br>or '70 to 75 is the modal length'        |
|                                                                                                                                                            | (5)  |                                                                                                                                                                        |

| B1  |                                                                                                                                                                                                                                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M3  | May be seen in stages.<br>FT their 40 provided between 6 and 50 inclusive                                                                                                                                                                                                                                        |
|     | M2 for $40 \times \pi \times 6^2$                                                                                                                                                                                                                                                                                |
|     | M1 for $60 \times 96 - k\pi$<br>sight of $\pi \times 6^2$ or 113(.09)                                                                                                                                                                                                                                            |
| A1  | CAO.<br>If no marks, allow M1 for sight of $\pi \times 6^2$ or<br>113(.09) seen in (a) or by the diagram                                                                                                                                                                                                         |
| (5) |                                                                                                                                                                                                                                                                                                                  |
| B2  | Mark final answer<br>B1 for sight of. $x^2 + 3x + 7x + 21$<br>or a final answer of either<br>• $x^2 + kx + 21$ , $k \neq 0$ or 10<br>• $x^2 + 10x + c$ , $c \neq 0$ or 21                                                                                                                                        |
| B1  |                                                                                                                                                                                                                                                                                                                  |
| B1  | Accept 0.33 or 0.3 but not 0.3.<br>FT from $ax = 1$ , $a \neq 1$ or $3x = b$<br>accept $\frac{1}{a}$ or $\frac{b}{3}$ but if on FT either simplifies to an<br>integer the answer must be given as an integer.<br>' $x =$ ' can be omitted but must not be wrong if<br>there.<br>Correct answer implies first B1. |
| B1  | Allow (x + 20)(x – 20) oe                                                                                                                                                                                                                                                                                        |
|     | No marks for T&I no marks for an unsupported answer.                                                                                                                                                                                                                                                             |
| M1  | Allow one error in one term, not in the equated coefficients                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                                  |
| A1  | CAO; $x = 3.5$ , $y = -0.5$                                                                                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                                                                                                                  |
|     | M3<br>A1<br>(5)<br>B2<br>B1<br>B1<br>B1<br>M1                                                                                                                                                                                                                                                                    |

| 6.*<br>(r = ) 7.6 × $\frac{15.6}{10.4}$ or 7.6 ÷ $\frac{10.4}{15.6}$                                                                                                                                     | M1<br>A1  | Or equivalent calculation that could lead to the correct answer.                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = 11.4                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (t = ) $19.5 \div \frac{15.6}{10.4}$ or $19.5 \times \frac{10.4}{15.6}$                                                                                                                                  | M1        | Or equivalent calculation that could lead to the correct answer.                                                                                                                                                                                                                                                                                                                                                                                                      |
| = 13                                                                                                                                                                                                     | A1        | Note: If answers are reversed award<br>M1 A0 M1 A0 SC1                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                          | (4)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.*(a)<br>Use of trigonometry in a right-angled triangle<br>with an angle of 48(°) or 42(°) and a side of<br>800 (m)                                                                                     | S1        | Trig ratio used may not be correct at this stage.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $(h =) \frac{800}{\cos(42)}$ or $(h =) \frac{800}{\sin(48)}$                                                                                                                                             | M2        | Or alternative <b>full</b> method<br>M1 for $cos(42) = \frac{800}{h}$ or $sin(48) = \frac{800}{h}$                                                                                                                                                                                                                                                                                                                                                                    |
| (h = ) 1076(.5) or 1077 (feet)                                                                                                                                                                           | A1        | Allow 1076 (feet) from correct working                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.*(b)(i)<br>A correct assumption e.g.<br>'The (surface of) the slope is smooth (and<br>he cycles the shortest distance).'                                                                               | E1        | Allow e.g.<br>'He rode in a straight line.'<br>'It was a straight line.'<br>'The track wasn't bumpy.'<br>'He cycled straight from the top to the bottom.'<br>'He didn't do any jumps.'<br>'There are no obstructions.'<br>'The surface is flat.'<br>'He cycled the shortest distance.'<br>'That it was 48° the whole way down'.<br>'That it is a right-angled triangle'<br>'The track is level' (assume they mean not<br>bumpy)<br>Do not allow:<br>'That it was 48°' |
| <ul> <li>7.*(b)(ii)</li> <li>A correct effect of assumption e.g.</li> <li>'If the surface of the slope is not smooth then Vaughan will have cycled further than the calculated value in (a).'</li> </ul> | E1<br>(6) | If no valid assumption is made, then this mark<br>cannot be awarded. Cannot award E0 E1.<br>Allow e.g.<br>'He cycled further.'<br>'The answer would be bigger.'<br>Do not allow:<br>'The answer would be different'                                                                                                                                                                                                                                                   |

|                                                                    | 1         |                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. (a)<br>95 % ≡ (£)1451.6(0)                                      | B1        | Accept any indication.                                                                                                                                                                                                                                                                                                                                                  |
| 1451.6(0) ÷ 95 × 100                                               | M1        | Or equivalent e.g.1451.6(0) ÷ 0.95<br>Note: This implies B1 M1.                                                                                                                                                                                                                                                                                                         |
| = (£)1528                                                          | A1        |                                                                                                                                                                                                                                                                                                                                                                         |
| 8.(b)<br>8.1 × 7.3 × 4                                             | M1        | (Volume = 236.52 cm <sup>3</sup> )<br>The following two marks can be awarded in any<br>order.                                                                                                                                                                                                                                                                           |
| × 10.49<br>÷ 200                                                   | m1<br>m1  | (Total mass = 2481.0948 g or<br>Volume of one piece = 1.1826 cm <sup>3</sup> )                                                                                                                                                                                                                                                                                          |
| = 12.4 (05) (g)                                                    | A1<br>(7) | Allow 12g from correct working                                                                                                                                                                                                                                                                                                                                          |
| 9.<br>A circle with a radius of 4 cm centred at the water feature. | B1        |                                                                                                                                                                                                                                                                                                                                                                         |
| Correct perpendicular bisector construction with appropriate arcs. | B2        | B1 for perpendicular bisector within tolerance $(\pm 2^{\circ})$ without arcs or with invalid arcs or for a correct pair of arcs that intersect twice.                                                                                                                                                                                                                  |
| Correct angle bisector construction with appropriate arcs.         | B2        | B1 for angle bisector within tolerance $(\pm 2^{\circ})$ without arcs or with invalid arcs or for a correct pair of arcs.                                                                                                                                                                                                                                               |
| Correct area clearly indicated.                                    | B1        | FT provided at least B1, B1, B1 previously awarded.                                                                                                                                                                                                                                                                                                                     |
|                                                                    | (6)       |                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{10.}{\frac{g+3f}{4}} = e$                                   | B2        | B1 for $g + 3f = 4e$ or $-g - 3f = -4e$                                                                                                                                                                                                                                                                                                                                 |
|                                                                    |           | If no marks, award SC1 for an answer of $\frac{g-3f}{4} = e$                                                                                                                                                                                                                                                                                                            |
|                                                                    | (2)       |                                                                                                                                                                                                                                                                                                                                                                         |
| 11.<br>Sight of 38.5 (cm) AND 44.5 (mm)                            | B1        | May be in a list of all the bounds and may be<br>seen as 385 mm and 4.45 cm<br>Note: 44.5 mm × 7 = 311.5 mm or 31.15 cm                                                                                                                                                                                                                                                 |
| 38.5 – 7 × 4.45 or 385 – 7 × 44.5                                  | M2        | <ul> <li>If B0, FT provided unambiguously chosen:<br/>Allow M2 for either of the following:</li> <li>use of 38 &lt; 'their 38.5' ≤ 39 AND<br/>4.4 ≤ 'their 4.45' &lt; 4.5</li> <li>use of 380 &lt; 'their 385' ≤ 390 AND<br/>44 ≤ 'their 44.5' &lt; 45</li> <li>Allow M1 for calculations with the bounds for M2<br/>but with mixed units e.g. 38.5 – 7 × 44</li> </ul> |
| = 7.35 (cm) or 73.5 (mm)                                           | A1        | CAO.<br>If units are given, they must be correct.                                                                                                                                                                                                                                                                                                                       |
|                                                                    | (4)       |                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                    | /         | I                                                                                                                                                                                                                                                                                                                                                                       |

| 12.                                                                                                                                                                                                                                                                                                                                               |     |                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No indicated or implied with<br>$(2 \times 1.81^3 - 3 \times 1.81^2 - 2 =) 0.03(1)$ AND<br>$(2 \times 1.82^3 - 3 \times 1.82^2 - 2 =) 0.1(19)$ AND                                                                                                                                                                                                | B2  | Allow for 0.03 seen and an explanation saying that 1.82 will lead to a greater answer that is not negative.                                                                                                                                                                                                                                                                         |
| a correct explanation e.g<br>'one should be positive, and one should be<br>negative'.<br>'0 is not between 0.119 and 0.03'<br>'0.119 and 0.03 are both positive'                                                                                                                                                                                  |     | <ul> <li>Award B1 for one of the following:</li> <li>0.03(1) and 0.1(19) seen with a correct explanation but with yes indicated.</li> <li>a correct explanation following an error in their substitution.</li> <li>0.03(1) and 0.1(19).</li> </ul>                                                                                                                                  |
| <u>Alternative Method</u><br>No indicated or implied with<br>$(2 \times 1.81^3 - 3 \times 1.81^2 =) 2.03(1)$ AND<br>$(2 \times 1.82^3 - 3 \times 1.82^2 =) 2.1(19)$ AND<br>a correct explanation e.g<br>'one should be more than 2, and one should<br>be less than 2'.<br>'0 is not between 0.119 and 0.03'<br>'0.119 and 0.03 are both positive' | B2  | <ul> <li>Allow for 2.03 seen and an explanation saying that 1.82 will lead to a greater answer that is not negative.</li> <li>Award B1 for one of the following: <ul> <li>2.03(1) and 2.1(19) seen with a correct explanation but with yes indicated.</li> <li>a correct explanation following an error in their substitution.</li> <li>2.03(1) and 2.1(19).</li> </ul> </li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                   | (2) |                                                                                                                                                                                                                                                                                                                                                                                     |

|                                                                                                                                                                                                                    |      | 1                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13.(a)(i)<br>A value between 39 and 40 (mins) inclusive                                                                                                                                                            | B1   |                                                                                                                                                                                                                                |
| 13.(a)(ii)<br>Intention UQ – LQ using readings for 37.5<br>and 12.5 (pupils)<br>50 to 51 (minutes) and 30 to 31 (minutes)                                                                                          | M1   |                                                                                                                                                                                                                                |
| Answers in the range 19 to 21 (minutes) inclusive.                                                                                                                                                                 | A1   | If no marks and a median of 43 to 44 seen in (a)<br>award SC2 answers of 33 to 34 (from LQ and UQ<br>at frequencies of 15 and 45 respectively)                                                                                 |
| 13(a)(iii)                                                                                                                                                                                                         |      |                                                                                                                                                                                                                                |
| $\frac{7}{50}$ (× 100)                                                                                                                                                                                             | M1   |                                                                                                                                                                                                                                |
| = 14 (%)                                                                                                                                                                                                           | A1   |                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                    |      | If no marks, award SC1 for an answer of 86 (%)<br>If use of 60 as total frequency already penalised<br>award SC2 for an answer of 28(.33%) or<br>SC1 for $\frac{17}{60}$ (× 100)<br>or an answer of 71.66 or 72%               |
| 13(b)<br>Left whisker at 12 and right at 65                                                                                                                                                                        | B1   |                                                                                                                                                                                                                                |
| UQ 55                                                                                                                                                                                                              | B1   | Seen or implied.                                                                                                                                                                                                               |
| UQ 55, median 45 and LQ 31 in a box plot                                                                                                                                                                           | B1   | Must be seen in a correct box plot, FT their UQ; if<br>no UQ is stated and it is not at 55 allow this mark<br>provided 45 < UQ < 65.                                                                                           |
| 13.(c)<br>Valid comment comparing medians e.g.                                                                                                                                                                     | E1   | FT their median and IQR from (a)                                                                                                                                                                                               |
| 'On average, School A were quicker than<br>School B as the median was 39.5 in school<br>A and 45 in School B.'                                                                                                     |      | Must be a comparison not simply a comment about one school.                                                                                                                                                                    |
| 'On average, School B were slower than<br>School A as the median was 39.5 in school<br>A and 45 in School B.'                                                                                                      |      | Allow e.g.<br>'School A had a lower median (so were quicker<br>on average)'.<br>'The average of School A is 5.5 minutes faster'.<br>'School A had a lower average of 39.5' as clearly<br>using the median as the average.      |
|                                                                                                                                                                                                                    |      | Do not allow e.g.<br>'School A had a median of 39.5 and School B had<br>a median of 45' (no comparison).<br>'On average School A were quicker', (no<br>reference to median or comparison of values).                           |
| Valid comment comparing IQRs or range e.g.                                                                                                                                                                         | E1   | FT "their IQR' from (a)(ii)<br>Must be a comparison not simply a comment<br>about one school.                                                                                                                                  |
| 'School A's results were less varied than<br>School B's as the IQR was 20 which was<br>less than School B's (which was 24)'<br>'School A's results were more consistent<br>than School B's as the IQR was 20 which |      | Allow e.g.<br>'School A's marks were more consistent as the<br>IQR is smaller'.                                                                                                                                                |
| was less than School B's (which was 24)'<br>'School A's results were more varied than<br>School B's as the range is bigger than<br>School B's (which was 53)'                                                      |      | Do not allow e.g.<br>'School A had an IQR of 20 and School B had an<br>IQR of 24' (no comparison).<br>'School B's results are more spread out than<br>School A's' (need to mention IQR since range for<br>School A is greater) |
|                                                                                                                                                                                                                    | (10) |                                                                                                                                                                                                                                |

|                                                                                              |     | 1                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14.<br>( $x^2 =$ ) 12 <sup>2</sup> - (9 ÷ 2) <sup>2</sup>                                    | M1  | Where x represents the perpendicular height.<br>Accept other notation.                                                                                                                                                                                                                       |
| $x^2 = 123.75$ or $(x =) \sqrt{123.75}$                                                      | A1  |                                                                                                                                                                                                                                                                                              |
| (x =) 11(.12) or $\frac{3\sqrt{55}}{2}$ (cm)                                                 | A1  |                                                                                                                                                                                                                                                                                              |
| (Volume = ) $\frac{1}{3} \times 9 \times 9 \times 11(.12)$                                   | M1  | FT their height provided M1 awarded.                                                                                                                                                                                                                                                         |
| Answers in the range 299.7 to 300.4 inclusive.                                               | A1  | FT                                                                                                                                                                                                                                                                                           |
|                                                                                              | (5) |                                                                                                                                                                                                                                                                                              |
| $\frac{15.(a)}{\frac{8}{17} \times \frac{7}{16}}$                                            | M1  |                                                                                                                                                                                                                                                                                              |
| $=\frac{56}{272}$ or $\frac{7}{34}$ oe                                                       | A1  | Allow 0.205 to 0.206 from correct working                                                                                                                                                                                                                                                    |
| $\frac{15.(b)}{\frac{8}{17} \times \frac{7}{16} + \frac{9}{17} \times \frac{8}{16}}$         | M1  | FT Their answer to (a) + $\frac{9}{17} \times \frac{8}{16}$                                                                                                                                                                                                                                  |
| $=\frac{128}{272}$ or $\frac{8}{17}$ oe                                                      | A1  | Allow 0.47 or 0.471 from correct working                                                                                                                                                                                                                                                     |
|                                                                                              | (4) |                                                                                                                                                                                                                                                                                              |
| 16.<br>(Area = ) $\frac{1}{2}(x + 1 + 2x)(2x - 3)$                                           | M1  |                                                                                                                                                                                                                                                                                              |
| $(3x^2 - 3.5x - 1.5 = 59.5) \times 2$ oe<br>convincingly leading to<br>$6x^2 - 7x - 3 = 119$ | A1  |                                                                                                                                                                                                                                                                                              |
| $(x = ) \frac{-(-7)\pm\sqrt{(-7)^2 - 4\times 6\times -122}}{2\times 6}$                      | M1  | The substitution into the formula must be<br>seen for M1, otherwise award M0A0A0.<br>FT 'their $6x^2 - 7x + c = 0$ ' where $c \neq -3$ for M1 and<br>possible m1<br>Allow one slip in substitution <u>for M1 only</u> but<br>must be correct formula.                                        |
| $(x = ) \frac{7 \pm \sqrt{2977}}{12}$                                                        | m1  | Can be implied from at least one correct value of x evaluated.                                                                                                                                                                                                                               |
| (x =) 5.1(30) (and -3.963)                                                                   | A1  | CAO                                                                                                                                                                                                                                                                                          |
| (Height =) 7.26 (cm)                                                                         | B1  | Accept answers in the range 7.2 to 7.3 inclusive<br>Allow this B1 if the correct value given following<br>sight of $6x^2 - 7x - 122 = 0$ otherwise,<br>FT provided 2nd M1 awarded. If their equation<br>has two positive solutions, then two correct FT<br>heights must be given for the B1. |
|                                                                                              | (6) |                                                                                                                                                                                                                                                                                              |

| $\frac{17.(a)}{\frac{131}{360}} \times \pi \times 11^2$                                                         | M1  |                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| =138.3() (mm²)                                                                                                  | A1  | Allow 136.26 or 138 (mm <sup>2</sup> ) from correct working                                                                                      |
| $\frac{17.(b)}{\frac{21}{60}} \times \pi \times 2y \text{ or } \frac{126}{360} \times \pi \times 2y \text{ oe}$ | M1  |                                                                                                                                                  |
| $=\frac{7\pi y}{10}$ or 0.7 $\pi$ y                                                                             | A1  |                                                                                                                                                  |
|                                                                                                                 | (4) |                                                                                                                                                  |
| 18.(a)                                                                                                          |     |                                                                                                                                                  |
| $t \propto \frac{1}{m^2}$ OR $t = \frac{k}{m^2}$                                                                | B1  |                                                                                                                                                  |
| $38 = \frac{k}{3^2}$ or k = 342                                                                                 | M1  | FT from B0 for a correct calculation of k from $t \propto \frac{1}{m}$ or $t \propto m^2$ or $t \propto \frac{1}{\sqrt{m}}$                      |
| $t = \frac{342}{m^2}$                                                                                           | A1  | CAO<br>Note: This may be seen in 18(b).                                                                                                          |
| 18.(b)<br>$m^2 = \frac{342}{12}$ or $m = (\pm)\sqrt{28.5}$ or<br>$m = (\pm)5.3(3)$                              | M1  | No marks for unsupported answers, work must<br>follow from (a).<br>FT provided at least M1 awarded in (a).                                       |
| 6 (mechanics)                                                                                                   | A1  | CAO                                                                                                                                              |
|                                                                                                                 | (5) |                                                                                                                                                  |
| 19.<br>$(BC =) \sqrt{6.4^2 + 8.3^2 - 2 \times 6.4 \times 8.3 \times \cos(71)}$                                  | M2  | Allow alternative full methods throughout<br>M1 for $(a^2) = 6.4^2 + 8.3^2 - 2 \times 6.4 \times 8.3 \times \cos(71)$<br>(=75.26)                |
| ( <i>BC</i> =) 8.67(5) or 8.7 (cm)                                                                              | A1  | Allow A1 for an answer of 8.6 from correct working not from premature rounding                                                                   |
| $\sin(BDC) = \frac{\sin(68)}{11.1} \times 8.6(75)$                                                              | M2  | FT 'their derived BC' provided it is a length.<br>M1 for $\frac{\sin (BDC)}{8.6(75)} = \frac{\sin(68)}{11.1}$                                    |
| (BDC = ) 46.4 to 46.6 (°)                                                                                       | A1  | Allow 47(°) from correct working.                                                                                                                |
| (CBD = ) 65.4 to 65.6 (°)                                                                                       | A1  | Allow answers of 65(°) or 66(°) from correct<br>working.<br>FT provided both cosine and sine rule attempted<br>and at least M1 awarded for each. |
|                                                                                                                 | (7) |                                                                                                                                                  |

| 20.(a)                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x > -2                                                                | B1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| y ≥ 3x + 1                                                            | B2        | B1 for one of the following:<br>• $y > 3x + 1$<br>• $y = 3x + 1$<br>• $y < 3x + 1$<br>• $y < 3x + 1$<br>• $y \le 3x + 1$<br>• $y \ge kx + 1$ with $k > 1$<br>• $y \ge 3x (\pm k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20.(b)<br>(Gradient of AB = )4                                        | B1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (Gradient of perpendicular bisector = ). $\frac{1}{4}$                | B1        | FT 'their gradient of AB'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Mid-point of $AB = $ ) (-1, 2)                                       | B1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $y - 2 = \frac{1}{4}(x - (-1))$ or $2 = \frac{1}{4}x - 1 + c$ oe      | M1        | FT 'their perpendicular bisector gradient' and 'their mid-point'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $4y - 8 = x + 1$ or $y = \frac{1}{4}x + 2\frac{1}{4}$ oe<br>or better | A1        | Allow any correct intermediate step.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| for convincingly showing $4y = x + 9$                                 | A1        | CAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                       | (9)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21.(a)<br>(0.66 – 0.07 – 0.31 =) 0.28                                 | Β3        | B3 only if no incorrect working seen and/or Venn diagram correct. Otherwise, possible B1 or B2. B2 for a fully correct Venn diagram $A = \begin{bmatrix} A & 0.31 & 0.07 & 0.28 \\ 0.31 & 0.07 & 0.28 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 \\ 0.34 & 0.34 $ |
| 21.(b)<br>0.72                                                        | B2<br>(5) | B1 for 1 – 0.28 or 0.34 + 0.31 + 0.07<br>FT their Venn diagram or answer in (a) for B1 or<br>B2 provided < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 22.(a)<br>(y = ) $(x - 2)^2 - 5$                                                                                             | B2  | B1 for either $a = -2$ or $b = -5$                                             |
|------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------|
| 22.(b)(i)<br>Translation through $\binom{k}{0}$ where $k > 0$                                                                | B1  | Ignore coordinates for this mark.                                              |
| Correct coordinates seen or scale marked,<br>(0,0) may be implied.                                                           | B1  | Correct curve through (0, 0) and (4, 0)                                        |
| 22.(b)(ii)<br>The correct reflection in the y axis<br>intersecting the y axis at (0,4) AND (-5,0)<br>indicated on the x axis | B2  | B1 for a correct reflection in the y-axis but (-5, 0) not marked or incorrect. |
|                                                                                                                              | (6) |                                                                                |
| 23.(a)<br>$x^2 + y^2 = 25$ or $x^2 + y^2 = 5^2$                                                                              | B1  |                                                                                |
| 23.(b)<br>(1,5)                                                                                                              | B2  | Allow $x = 1$ and $y = 5$<br>B1 for $5 = 2x + 3$ or better                     |
|                                                                                                                              | (3) |                                                                                |

C300UB0-1 EDUQAS GCSE Mathematics – Component 2 HT MS A23/MLS