Other Names

GCSE

C300UA0-1

MATHEMATICS – Component 1 Non-Calculator Mathematics HIGHER TIER

THURSDAY, 2 NOVEMBER 2017

– MORNING

2 hours 15 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

Take π as 3.14.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

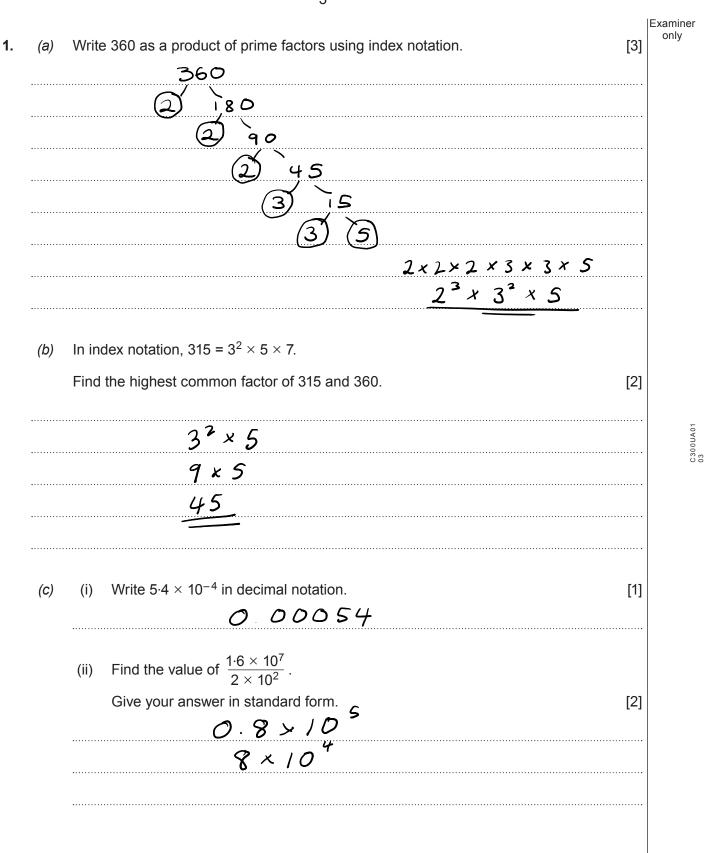
You are reminded of the need for good English and orderly, clear presentation in your answers.

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	8					
2.	5					
3.	4					
4.	2					
5.	4					
6.	5					
7.	5					
8. <i>(a)</i>	3					
8.(b)(c)	5					
9.	5					
10.	6					
11.	7					
12.	5					
13.	5					
14.	4					
15.	7					
16.	5					
17.	6					
18.	7					
19.	4					
20.	5					
21.	8					
22.	5					
Total	120					

Formula list

2

Area and volume formulae


Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone =
$$\pi rl$$

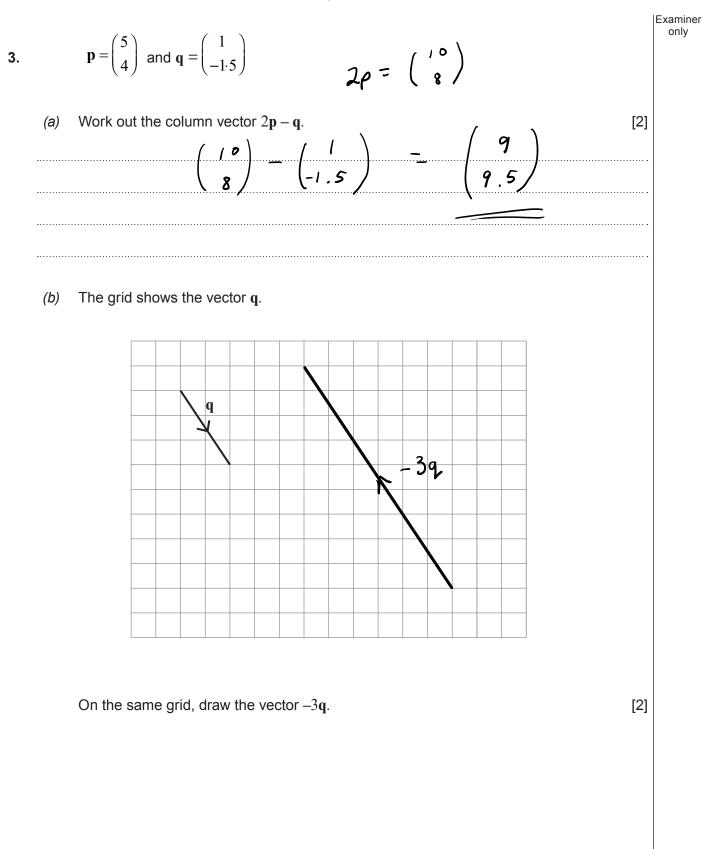
Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

Turn over.

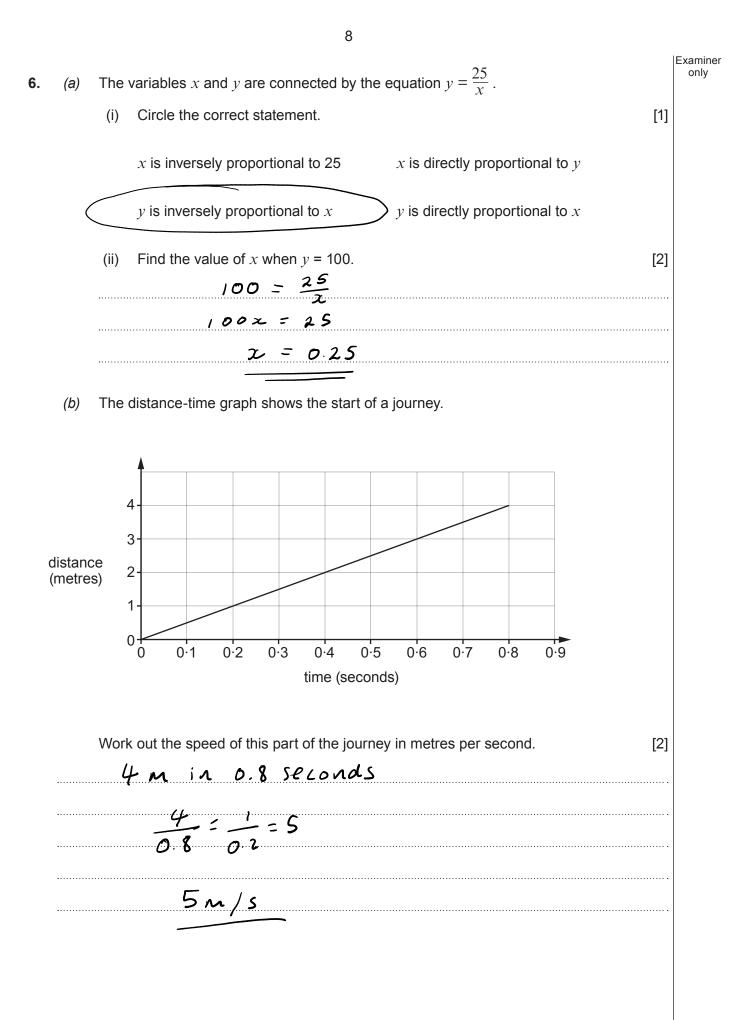

	Text Call Take a photo	
• Th	State one criticism of this question.	[1]
M	ere are other things people do on shile phones (eg play games, internet	.)
(ii) How ofter Tick (✔) c	ple мay want to tick More than one of Here is a different question from her survey. n do you use your mobile phone? ne box. e time A lot Not much Never	
ре "По	State one criticism of this question. ople will have different ideas or what + Much" and "a lot" Mean.	[1]


(b) Tina surveyed 205 students about the cost of their monthly phone bills. The table shows this information. Number of students Lowest bill Mean bill Highest bill Pay-as-you-go 100 £5 £12.75 £70 100 £15 £16.25 £18 SIM only Monthly contract 5 £28 £40 £60 (i) Comment on how reliable the data about Monthly contracts are likely to be. [1] Not very reliable due to small sample Size. Using the data in the table, Tina compares the cost of Pay-as-you-go with the (ii) cost of SIM only. Tina says that students who use Pay-as-you-go have both the lowest and highest bills. Make further comments to explain why Tina may think • SIM only is a better deal, • Pay-as-you-go is a better deal. [2] Complete each of the following statements. the range of SIM only could be a better deal because billy is lower. Pay-as-you-go could be a better deal because the average (mean) cost is lower.

Turn over.

C300UA01 05

Examiner only


4. Using a ruler and a pair of compasses, construct the perpendicular from *A* to the line *BC*. You must show your construction arcs.

7

Turn over.

Examiner only

> C300UA01 07

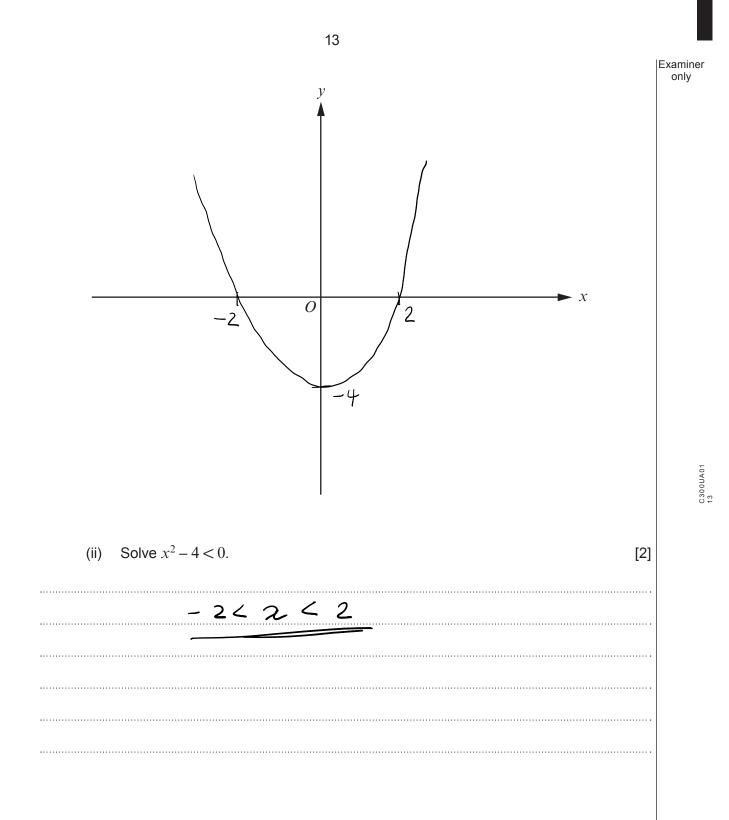
7.	(a)		Examiner only
		14π	
		(ii) Work out $12\pi \div 3\pi$. [1]
	(b)	The diagram shows a circle inside a square. The circumference of the circle touches all four sides of the square.	
		biagram not drawn to scale	C300UA01 09
		The perimeter of the square is 24 cm.	
		Work out the area of the circle. Give your answer as a multiple of π . [: $24 \div 4 = 6 c M$	3]
		r = 3cm	
		$Area = \pi r^{2}$ $= \pi (3)^{2}$	
	•••••	$= \pi(3)$ = $9\pi cm^{2}$	
		—	

	Work out $3\frac{1}{5} - 1\frac{2}{7}$.	a ve				[3]
	7× 16 -					
	7× 5	7 ×5				
	112	49	$= \frac{67}{35}$	_ =	32	
	35 3	.5	35	ر ج	35	
(b)	Three two-digit integers	s <i>a. h</i> and	c are in the	ratios		
,		:5 x			e=7:11. x5	
	Find the integers a, b a		I			[3]
	a.: b		k	5. C		[0]
	28:35		35	:55		••••••
						••••••
		L: 6	: C			•••••••
			5:55			•••••••
a	= 28	b =	35		_{c =} 55	
(c)	A length of string has b	een cut ir	nto two pieco			
	The longer piece meas	ures 205	cm.			
	What was the original le	ength of t	he string?		<u>041</u> 5120	[2]
	5 parts	5	205	СМ	5120:	5
	1 part	Ξ	41 c	м		
	5 parts 1 part 8 parts	7	41 ×	8		
	•	5	328	cm		

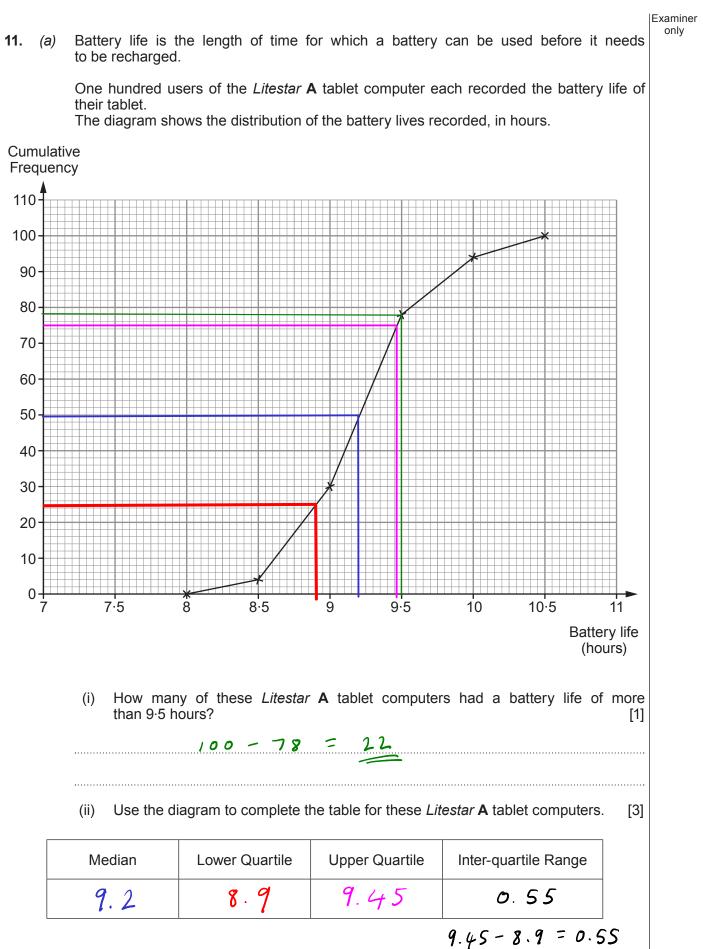
	You may assume that all workers work at the same rate. [3]
	4 workers can load 10 tonnes in 6 hrs
	4×6 = 24 (24 hours for 1 worker)
	$24 \div 6 = 4$ 4 hours
b)	State one other assumption you have made in your answer to part <i>(a)</i> . How would your answer to part <i>(a)</i> change if this assumption were not correct? [2]
4	Il the roads are the same it these
./	Il the goods are the same. If there e more boxes or diffult to carry goods

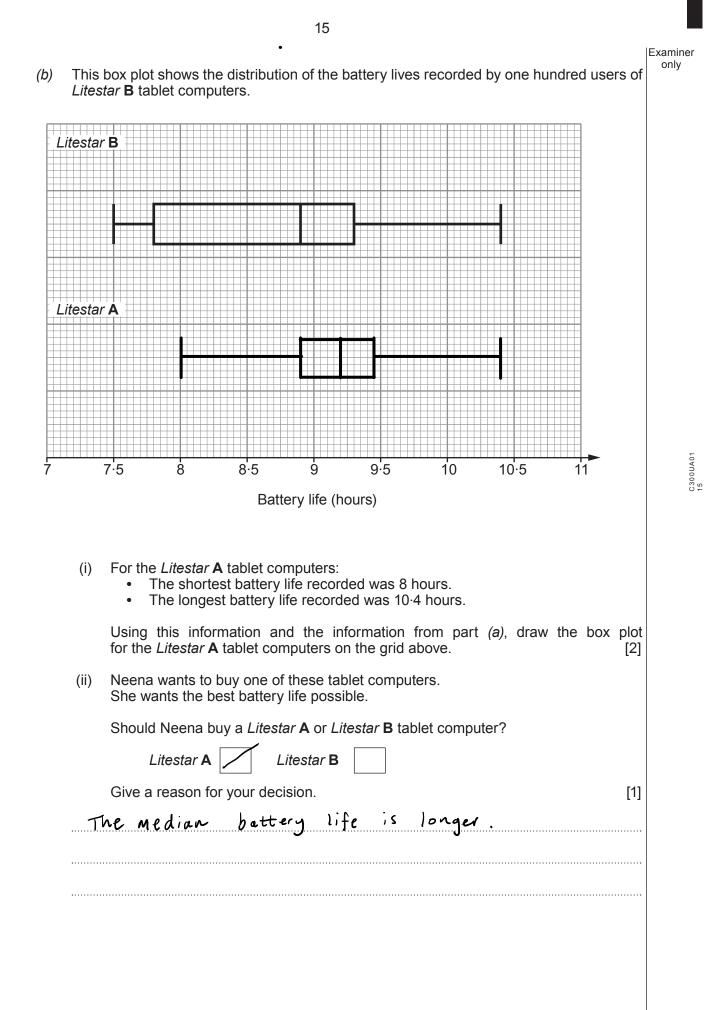
Turn over.

C300UA01 11


10.	(a)	Olly is	trying	to solve	this	inequality.
-----	-----	---------	--------	----------	------	-------------

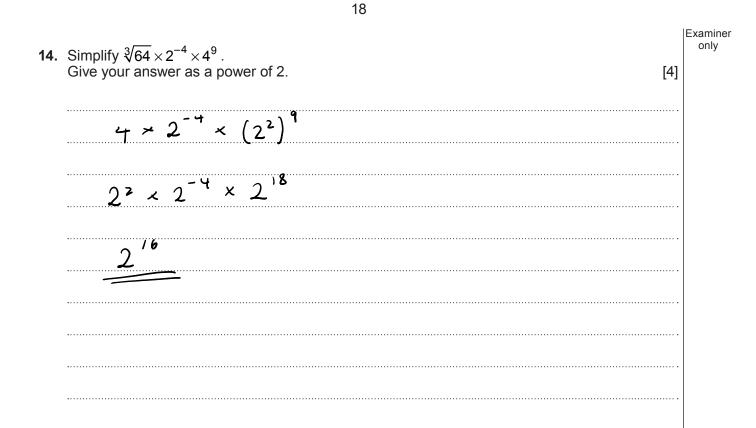
10 - 2x > 3


Here is Olly's solution.


	Stej Stej Stej	p 2		2x > 3 > -7				
			-2x	>-7	(÷ -2)			
	Step	2			、 -/			
		03	×>	<u>-7</u> -2				
	Ans	wer	×>	3.5				
ls Olly's so Show clear								
No.	Let	2=	:4	٢	+ > 3	. 5		
but:								
·····						is	not t	ive.
when y	jou .	x or	÷ Ę	oy a	neqi	x ti u e	the	-
sign				-				
3								
(i) Sketo oppo	ch the gra site. Mark	ph of y any inte	$= x^2 - 4$ ercepts wi	for value th the <i>x</i> -a	es of x be axis.	etween -	-3 and 3 c	on the a
χ-	-3 -	2	- l	0)	2	3	
y	5	0	- 3	-4	- 3	0	5	
~ I		•••••	·····					

Examiner only

© WJEC CBAC Ltd.



12.	She uses a It is not saf Each sack Each box o Mahima th of chocolat Is Mahima Justify you	fe to have m of flour weig of chocolate hinks it is al te at the sam correct? r answer wit	nove sacks of ore than 215 ghs 10 kg, co weighs 8 4 kg ways safe to	kg on the rrect to t g, correc g use her s.	trolley. he neares t to the ne trolley to	t kilogram. arest 200 gra move 4 sacl		10 / 11 /0.5 8.4 / our and 20 h	Examiner only 5]
	upper	bound	or choc	•	8. Skg				
		4 ×	10.5	+	20 ×	8.5	= 2	-12 g	
	Y-es.	Manin	ua is c	ovrect					

13.	Rearrange the formula $5+x$	Examiner only
	$y = \frac{5+x}{w-2x}$ to make <i>x</i> the subject. [5]	
	y(w-2x) = 5 + x	
	wy - 2xy = 5 + x	
	wy - 5 = x + 2xy	
	-y-5 = -(1+2y)	
	$x = \frac{wy - 5}{2}$	
	$x = \frac{wy - 5}{1 + 2y}$	

© WJEC CBAC Ltd.

- © WJEC CBAC Ltd.

only

15. Fifty people order food and drink for a party. They each order one main course and one drink from the menu.

(N	Nenu
Main course Pizza Burger Kebab	Drink Cola Water Juice

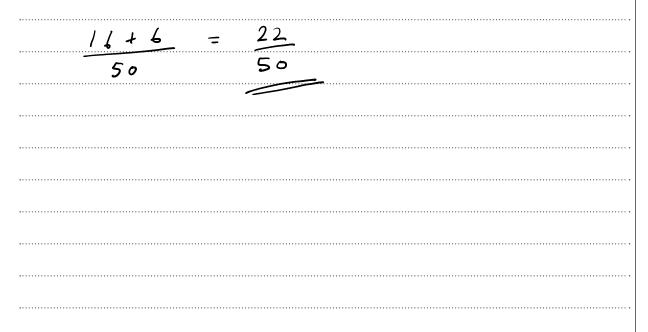
19

28 people order cola.

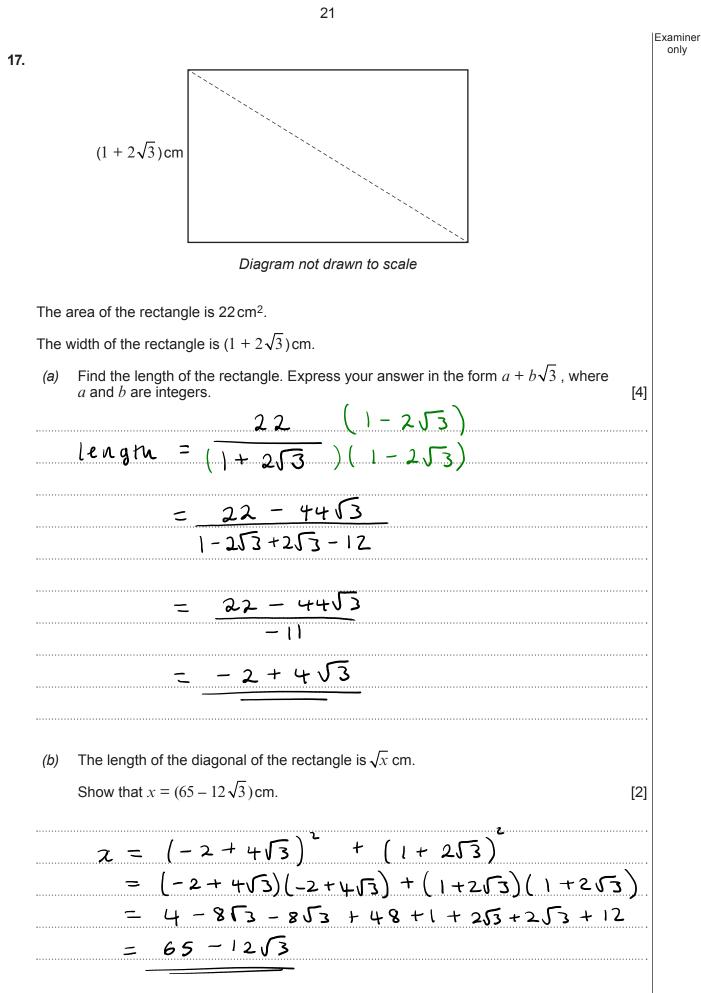
24 people order a burger.

8 people order a kebab and none of these order cola.

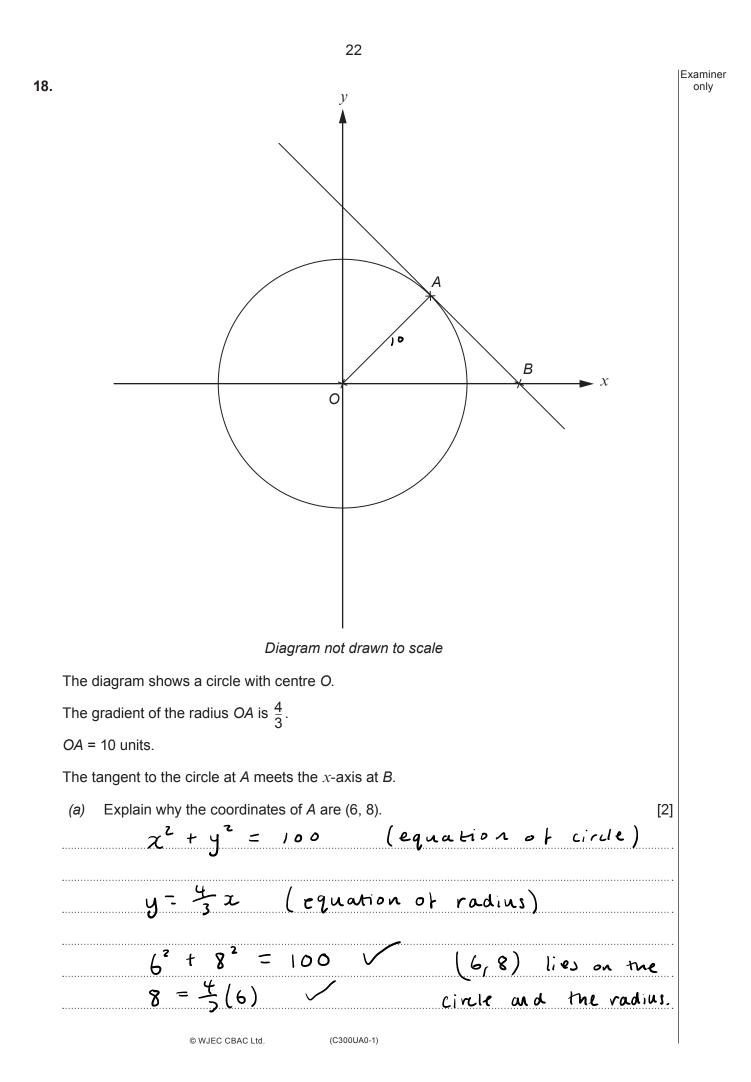
The 5 people who order water all order a kebab.

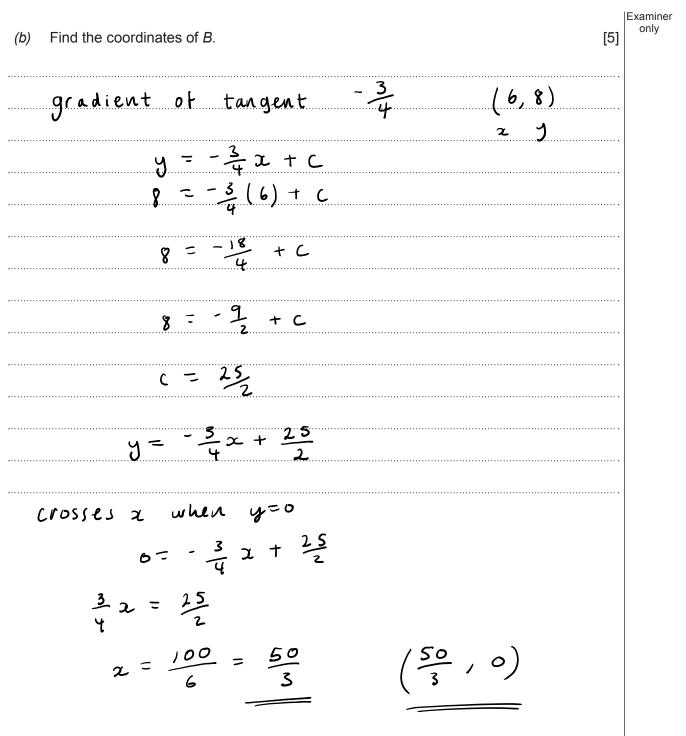

Of the people who order a burger, twice as many order cola as order juice. $24 \div 3 = 8$

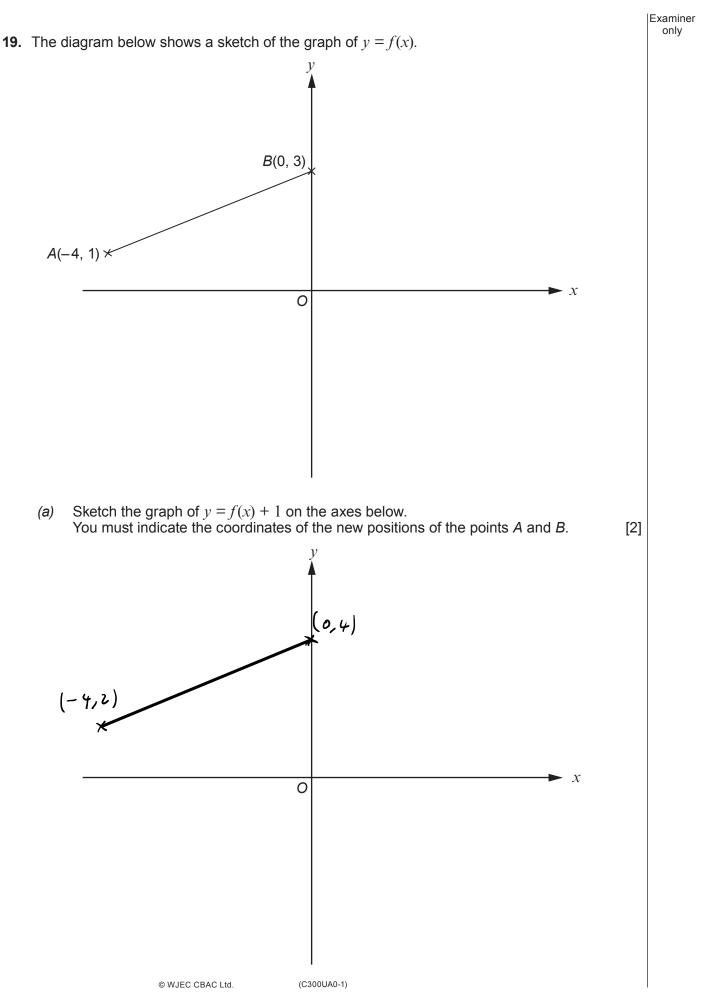
A person is selected at random from the group.

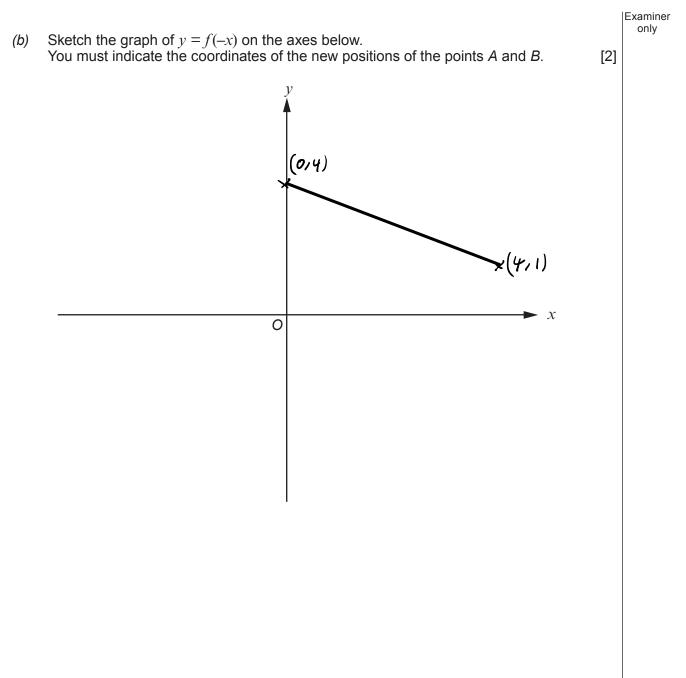

Using the table to help you, find the probability that this person orders either a burger and cola or a pizza and juice. [7]

You must show all your working.


	Cola	Water	Juice	Total
Pizza	12	0	б	18
Burger	16	0	8	24
Kebab	D	5	3	8
Total	28	5	17	50




16.	 In the diagram, ACE is a triangle, BCDFG is a regular pentagon. 	Examiner only
	C 108° 108° 108° 108°	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Diagram not drawn to scale Prove that triangle ABG is congruent to triangle EDF. Give a reason for each statement you make in your proof. Exterior angle in a pentagon $\frac{360}{5} = 72$ [5]	
	180-72 = 108° (All Interior angles)	
	180-108 = 72 (Angles on a straight line) BG = DF as BCDFG is a regular pentagon	
	$ABG = AGB = EDF = DFE$ all 72°	
	Conclusion:	
	ABG is congruent to EDF ASA	



Turn over.

© WJEC CBAC Ltd.

|Examiner only How many different 5-digit whole numbers can be made using the digits 2, 3, 4, 5, and 6 when each digit can be used once only? 20. (a) (i) [2] $5 \times 4 \times 3 \times 2 \times 1 = 120$ What proportion of the 5-digit whole numbers are odd? [1] (ii) How many different 7-digit **even** whole numbers can be made using the digits 3, 4, 5, 6, 7, <u>8</u> and 9 when each digit can be used once only? (b) [2] even $even = \frac{3}{7} \times \frac{7}{5} \times \frac{5}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5}$ 18×120 120 X 18 2160

	f(x) = 5x + 2 $g(x) = x^{3}$ $z = f(1 \circ)$	E
(8) Solve $f^{-1}(x) = 10$.	[4]
·····	5(10)+2 = 52	
•••••		
(k	(i) Show that $gf(x) = 125x^3 + 150x^2 + 60x + 8$.	[3]
(k	(i) Show that $gf(x) = 125x^3 + 150x^2 + 60x + 8$. $gf(x) = (5x + 2)^3$	[3]
(Ł	3	[3]
(比	$gf(x) = (5x+2)^{3}$ = (5x+2)(5x+2)(5x+2) = (25x^{2} + 10x + 10x + 4)(5x+2)	[3]
(比	$gf(x) = (5x+2)^{3}$ = (5x+2)(5x+2)(5x+2) = (25x^{2} + 10x + 10x + 4)(5x+2) = (25x^{2} + 20x + 4)(5x+2)	
(比	$gf(x) = (5x+2)^{3}$ = (5x+2)(5x+2)(5x+2) = (25x^{2} + 10x + 10x + 4)(5x+2)	
(ਇ	$gf(x) = (5x+2)^{3}$ $= (5x+2)(5x+2)(5x+2)$ $= (25x^{2} + 10x + 10x + 4)(5x+2)$ $= (25x^{2} + 20x + 4)(5x+2)$ $= 125x^{3} + 50x^{2} + 100x^{2} + 40x + 20x$	
(ਇ	$gf(x) = (5x+2)^{3}$ $= (5x+2)(5x+2)(5x+2)$ $= (25x^{2} + 10x + 10x + 4)(5x+2)$ $= (25x^{2} + 20x + 4)(5x+2)$ $= 125x^{3} + 50x^{2} + 100x^{2} + 40x + 20x$ $= 125x^{3} + 150x^{2} + 60x + 8$ (ii) Find gf(-1).	. + 8

2. (a)	Write the expression $x^2 - 6x + 19$ in the form $(x + a)^2 + b$, where <i>a</i> and <i>b</i> are integers. [3]	Examin only
	$(x-3)^2 - 9 + 19$	
	$(2-3)^2 + 10$	
(b)	State the coordinates of the turning point of the curve $y = x^2 - 6x + 30$. [2]	
	$(x-3)^2 - 9 + 30$	
	$(x-3)^2+2$	
	Turning point = $(3, 21)$	
	END OF PAPER	

For continuation only.	Examiner only
© WJEC CBAC Ltd. (C300UA0-1)	

BLANK PAGE

BLANK PAGE